48 research outputs found

    Optogenetics: Background, Methodological Advances and Potential Applications for Cardiovascular Research and Medicine

    Get PDF
    Optogenetics is an elegant approach of precisely controlling and monitoring the biological functions of a cell, group of cells, tissues, or organs with high temporal and spatial resolution by using optical system and genetic engineering technologies. The field evolved with the need to precisely control neurons and decipher neural circuity and has made great accomplishments in neuroscience. It also evolved in cardiovascular research almost a decade ago and has made considerable progress in both in vitro and in vivo animal studies. Thus, this review is written with an objective to provide information on the evolution, background, methodical advances, and potential scope of the field for cardiovascular research and medicine. We begin with a review of literatures on optogenetic proteins related to their origin, structure, types, mechanism of action, methods to improve their performance, and the delivery vehicles and methods to express such proteins on target cells and tissues for cardiovascular research. Next, we reviewed historical and recent literatures to demonstrate the scope of optogenetics for cardiovascular research and regenerative medicine and examined that cardiac optogenetics is vital in mimicking heart diseases, understanding the mechanisms of disease progression and also in introducing novel therapies to treat cardiac abnormalities, such as arrhythmias. We also reviewed optogenetics as promising tools in providing high-throughput data for cardiotoxicity screening in drug development and also in deciphering dynamic roles of signaling moieties in cell signaling. Finally, we put forth considerations on the need of scaling up of the optogenetic system, clinically relevant in vivo and in silico models, light attenuation issues, and concerns over the level, immune reactions, toxicity, and ectopic expression with opsin expression. Detailed investigations on such considerations would accelerate the translation of cardiac optogenetics from present in vitro and in vivo animal studies to clinical therapies

    Targeted expression of cyclin D2 ameliorates late stage anthracycline cardiotoxicity

    Get PDF
    Aims Doxorubicin (DOX) is a widely used and effective anti-cancer therapeutic. DOX treatment is associated with both acute and late onset cardiotoxicity, limiting its overall efficacy. Here, the impact of cardiomyocyte cell cycle activation was examined in a juvenile model featuring aspects of acute and late onset DOX cardiotoxicity. Methods and results Two-week old MHC-cycD2 transgenic mice (which express cyclin D2 in postnatal cardiomyocytes and exhibit sustained cardiomyocyte cell cycle activity; D2 mice) and their wild type (WT) littermates received weekly DOX injections for 5 weeks (25 mg/kg cumulative dose). One week after the last DOX treatment (acute stage), cardiac function was suppressed in both groups. Acute DOX cardiotoxicity in D2 and WT mice was associated with similar increases in the levels of cardiomyocyte apoptosis and Ku70/Ku80 expression (markers of DNA damage and oxidative stress), as well as similar reductions in hypertrophic cardiomyocyte growth. Cardiac dysfunction persisted in WT mice for 13 weeks following the last DOX treatment (late stage) and was accompanied by increased levels of cardiomyocyte apoptosis, Ku expression, and myocardial fibrosis. In contrast, D2 mice exhibited a progressive recovery in cardiac function, which was indistinguishable from saline-treated animals by 9 weeks following the last DOX treatment. Improved cardiac function was accompanied by reductions in the levels of late stage cardiomyocyte apoptosis, Ku expression, and myocardial fibrosis. Conclusion These data suggest that cardiomyocyte cell cycle activity can promote recovery of cardiac function and preserve cardiac structure following DOX treatment

    P53 inhibition exacerbates late-stage anthracycline cardiotoxicity

    Get PDF
    AIMS: Doxorubicin (DOX) is an effective anti-cancer therapeutic, but is associated with both acute and late-stage cardiotoxicity. Children are particularly sensitive to DOX-induced heart failure. Here, the impact of p53 inhibition on acute vs. late-stage DOX cardiotoxicity was examined in a juvenile model. METHODS AND RESULTS: Two-week-old MHC-CB7 mice (which express dominant-interfering p53 in cardiomyocytes) and their non-transgenic (NON-TXG) littermates received weekly DOX injections for 5 weeks (25 mg/kg cumulative dose). One week after the last DOX treatment (acute stage), MHC-CB7 mice exhibited improved cardiac function and lower levels of cardiomyocyte apoptosis when compared with the NON-TXG mice. Surprisingly, by 13 weeks following the last DOX treatment (late stage), MHC-CB7 exhibited a progressive decrease in cardiac function and higher rates of cardiomyocyte apoptosis when compared with NON-TXG mice. p53 inhibition blocked transient DOX-induced STAT3 activation in MHC-CB7 mice, which was associated with enhanced induction of the DNA repair proteins Ku70 and Ku80. Mice with cardiomyocyte-restricted deletion of STAT3 exhibited worse cardiac function, higher levels of cardiomyocyte apoptosis, and a greater induction of Ku70 and Ku80 in response to DOX treatment during the acute stage when compared with control animals. CONCLUSION: These data support a model wherein a p53-dependent cardioprotective pathway, mediated via STAT3 activation, mitigates DOX-induced myocardial stress during drug delivery. Furthermore, these data suggest an explanation as to how p53 inhibition can result in cardioprotection during drug treatment and, paradoxically, enhanced cardiotoxicity long after the cessation of drug treatment

    Minimally Invasive Delivery of 3D Shape Recoverable Constructs with Ordered Structures for Tissue Repair

    Get PDF
    Minimally invasive procedures are becoming increasingly more common in surgery. However, the biomaterials capable of delivering biomimetic, three-dimensional (3D) functional tissues in a minimally invasive manner and exhibiting ordered structures after delivery are lacking. Herein, we reported the fabrication of gelatin methacryloyl (GelMA)-coated, 3D expanded nanofiber scaffolds and their potential applications in minimally invasive delivery of 3D functional tissue constructs with ordered structures and clinically appropriate sizes (4 cm × 2 cm × 1.5 mm). GelMA-coated, expanded 3D nanofiber scaffolds produced by combining electrospinning, gas-foaming expansion, hydrogel coating, and crosslinking are extremely shape recoverable after release of compressive strain, displaying a superelastic property. Such scaffolds can be seeded with various types of cells, including dermal fibroblasts, bone marrow-derived mesenchymal stem cells, and human neural stem/precursor cells to form 3D complex tissue constructs. Importantly, the developed 3D tissue constructs can be compressed and loaded into a 4-mm diameter glass tube for minimally invasive delivery without compromising the cell viability. Taken together, the method developed in this study could hold great promise for transplantation of biomimetic, 3D functional tissue constructs with well-organized structures for tissue repair and regeneration using minimally invasive procedures like laparoscopy and thoracoscopy

    Overcoming the roadblocks to cardiac cell therapy using tissue engineering

    Get PDF
    Transplantations of various stem cells or their progeny have repeatedly improved cardiac performance in animal models of myocardial injury; however, the benefits observed in clinical trials have been generally less consistent. Some of the recognized challenges are poor engraftment of implanted cells and, in the case of human cardiomyocytes, functional immaturity and lack of electrical integration, leading to limited contribution to the heart’s contractile activity and increased arrhythmogenic risks. Advances in tissue and genetic engineering techniques are expected to improve the survival and integration of transplanted cells, and to support structural, functional, and bioenergetic recovery of the recipient hearts. Specifically, application of a prefabricated cardiac tissue patch to prevent dilation and to improve pumping efficiency of the infarcted heart offers a promising strategy for making stem cell therapy a clinical reality. [Display omitted

    Protein phosphatase 5 and the tumor suppressor p53 down-regulate each other's activities in mice

    Get PDF
    Protein phosphatase 5 (PP5), a serine/threonine phosphatase, has a wide range of biological functions and exhibits elevated expression in tumor cells. We previously reported that pp5-deficient mice have altered ataxia-telangiectasia mutated (ATM)-mediated signaling and function. However, this regulation was likely indirect, as ATM is not a known PP5 substrate. In the current study, we found that pp5-deficient mice are hypersensitive to genotoxic stress. This hypersensitivity was associated with the marked up-regulation of the tumor suppressor tumor protein p53 and its downstream targets cyclin-dependent kinase inhibitor 1A (p21), MDM2 proto-oncogene (MDM2), and phosphatase and tensin homolog (PTEN) in pp5-deficient tissues and cells. These observations suggested that PP5 plays a role in regulating p53 stability and function. Experiments conducted with p53 +/- pp5 +/- or p53 +/- pp5 -/- mice revealed that complete loss of PP5 reduces tumorigenesis in the p53 +/- mice. Biochemical analyses further revealed that PP5 directly interacts with and dephosphorylates p53 at multiple serine/threonine residues, resulting in inhibition of p53-mediated transcriptional activity. Interestingly, PP5 expression was significantly up-regulated in p53-deficient cells, and further analysis of pp5 promoter activity revealed that p53 strongly represses PP5 transcription. Our results suggest a reciprocal regulatory interplay between PP5 and p53, providing an important feedback mechanism for the cellular response to genotoxic stress

    Critical Roles of STAT3 in β-Adrenergic Functions in the Heart

    Get PDF
    BACKGROUND: β-Adrenergic receptors (βARs) play paradoxical roles in the heart. On one hand, βARs augment cardiac performance to fulfill the physiological demands, but on the other hand, prolonged activations of βARs exert deleterious effects that result in heart failure. The signal transducer and activator of transcription 3 (STAT3) plays a dynamic role in integrating multiple cytokine signaling pathways in a number of tissues. Altered activation of STAT3 has been observed in failing hearts in both human patients and animal models. Our objective is to determine the potential regulatory roles of STAT3 in cardiac βAR-mediated signaling and function. METHODS AND RESULTS: We observed that STAT3 can be directly activated in cardiomyocytes by β-adrenergic agonists. To follow up this finding, we analyzed βAR function in cardiomyocyte-restricted STAT3 knockouts and discovered that the conditional loss of STAT3 in cardiomyocytes markedly reduced the cardiac contractile response to acute βAR stimulation, and caused disengagement of calcium coupling and muscle contraction. Under chronic β-adrenergic stimulation, Stat3cKO hearts exhibited pronounced cardiomyocyte hypertrophy, cell death, and subsequent cardiac fibrosis. Biochemical and genetic data supported that Gαs and Src kinases are required for βAR-mediated activation of STAT3. Finally, we demonstrated that STAT3 transcriptionally regulates several key components of βAR pathway, including β1AR, protein kinase A, and T-type Ca(2+) channels. CONCLUSIONS: Our data demonstrate for the first time that STAT3 has a fundamental role in βAR signaling and functions in the heart. STAT3 serves as a critical transcriptional regulator for βAR-mediated cardiac stress adaption, pathological remodeling, and heart failure

    Cell-Cycle-Based Strategies to Drive Myocardial Repair

    Get PDF
    Cardiomyocytes exhibit robust proliferative activity during development. After birth, cardiomyocyte proliferation is markedly reduced. Consequently, regenerative growth in the postnatal heart via cardiomyocyte proliferation (and, by inference, proliferation of stem-cell-derived cardiomyocytes) is limited and often insufficient to affect repair following injury. Here, we review studies wherein cardiomyocyte cell cycle proliferation was induced via targeted expression of cyclin D2 in postnatal hearts. Cyclin D2 expression resulted in a greater than 500-fold increase in cell cycle activity in transgenic mice as compared to their nontransgenic siblings. Induced cell cycle activity resulted in infarct regression and concomitant improvement in cardiac hemodynamics following coronary artery occlusion. These studies support the notion that cell-cycle-based strategies can be exploited to drive myocardial repair following injury

    Regulation of Chemokine and Chemokine Receptor Expression by PPARγ in Adipocytes and Macrophages

    Get PDF
    PPARγ plays a key role in adipocyte biology, and Rosiglitazone (Rosi), a thiazolidinedione (TZD)/PPARγ agonist, is a potent insulin-sensitizing agent. Recent evidences demonstrate that adipose tissue inflammation links obesity with insulin resistance and that the insulin-sensitizing effects of TZDs result, in part, from their anti-inflammatory properties. However the underlying mechanisms are unclear.In this study, we establish a link between free fatty acids (FFAs) and PPARγ in the context of obesity-associated inflammation. We show that treatment of adipocytes with FFAs, in particular Arachidonic Acid (ARA), downregulates PPARγ protein and mRNA levels. Furthermore, we demonstrate that the downregulation of PPARγ by ARA requires the activation the of Endoplamsic Reticulum (ER) stress by the TLR4 pathway. Knockdown of adipocyte PPARγ resulted in upregulation of MCP1 gene expression and secretion, leading to enhanced macrophage chemotaxis. Rosi inhibited these effects. In a high fat feeding mouse model, we show that Rosi treatment decreases recruitment of proinflammatory macrophages to epididymal fat. This correlates with decreased chemokine and decreased chemokine receptor expression in adipocytes and macrophages, respectively.In summary, we describe a novel link between FAs, the TLR4/ER stress pathway and PPARγ, and adipocyte-driven recruitment of macrophages. We thus both describe an additional potential mechanism for the anti-inflammatory and insulin-sensitizing actions of TZDs and an additional detrimental property associated with the activation of the TLR4 pathway by FA

    Extended State Observer-Based Parameter Identification of Response Model for Autonomous Vessels

    No full text
    Identification of parameters involved in the linear response model with high precision is a highly cost-effective, as well as a challenging task, in developing a suitable model for the verification and validation (V+V) of some key techniques for autonomous vessels in the virtual testbed, e.g., guidance, navigation, and control (GNC). In order to deal with this identification problem, a novel identification framework is proposed in this paper by introducing the extended state observer (ESO), and the well-evaluated robust weighted least square support vector regression algorithm (RW-LSSVR). A second-order linear response model is investigated in this study due to its wide use in controller designs. Considering the highly possible situation that only limited states could be measured directly, the required but immeasurable states in identifying parameters contained in the response model are approximately estimated by the ESO. Theoretical analysis of the stability is given to show and improve the applicability of the ESO. Simulation studies based on linear response models with predefined parameter values of a cargo vessel and a patrol vessel maneuvering in an open water area are carried out, respectively. Results show that the proposed approach not only estimates immeasurable states with high accuracy but also ensures good performance on the parameter identification of the response model with very close values to the nominal ones. The proven identified approach is economic because it only requires limited kinds of low-cost sensors
    corecore